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A remarkable connection is established between the “volume” of a random agglomerate and its “sur-
face area.” This connection, which is based on the method of functional differentiation, is illustrated us-
ing a prototype of nucleation and growth models. Several directions for further generalizations of this

method are also indicated.
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The perimeter of a circle is the R derivative of its area
mR?, namely, 27R, and the surface area of a sphere is the
R derivative of its volume 7R 3. Is there a similar con-
nection between the “volume” and the “surface area” of
a random agglomerate such as the one shown in Fig. 1?
This paper addresses this question and shows that there is
indeed such a connection. It is based on the functional
derivative.

Random agglomeration of particles is encountered in a
variety of nucleation and growth phenomena leading to
the formation of new solid phases: compact, porous, or
particulate. Porous and particulate material systems
offer a large effective surface area per unit volume and
hence find applications requiring large contact areas such
as catalytic reactors, electrochemical power sources (e.g.,
batteries and fuel cells), and supercapacitors, to name a
few. In all this, a measure of the exposed area is of much
interest. We present here a simple description of this
areal measure of a random agglomerate of particles and
illustrate it with a prototypical nucleation and growth
model.

For ease of presentation and without loss of generality,
the two-dimensional (2D) version of the random ag-
glomerate shall be employed and consequently the perim-

FIG. 1. 2D random agglomerate. The differential increase in
the radius R; of a cluster is indicated by dashed curve and N is
the neck region.
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eter will be the quantity of interest. Figure 1 shows a sec-
tion of the 2D random agglomerate consisting of disks of
different radii (R;) and randomly overlapping with one
another. In the absence of overlap, the perimeter is trivi-
ally given by 273 ;R; (ignoring edge effects, which are
important for finite systems). In the presence of overlap,
the perimeter depends not only on the set of radii (R;)
but also on the relative placement of the disks and be-
comes a highly complex random set.

The approach presented in this paper is essentially
based on the simple observation that the perimeter 27 R
of a circular disk is the rate of change of its area wR?
with radius R. Extending this elementary principle to the
overlapping disks in Fig. 1, it is realized that once we
have secmehow expressed the area S, covered by the disks,
as a function of the disks’ radii (R;) and their placements
(collectively denoted P), the perimeter contributed by a
particular radius R; is simply given by [1]

d

Li=-§E;S(R1’R2""’Rk;P) (1)

and the total perimeter
L=31L;. (2)
i

It must be appreciated at the outset that all complexities
arising from the overlap scenario (including the overlap
of the disks with the outer edges of a finite system) are
buried in the function S(R{,R,, ..., Ry;P).

Next, let the radii R; range from zero to a maximum
value of R. Further, let this range of radius zero to R be
parametrized by a continuous real variable € such that €
ranges from a minimum value of €; to a maximum value
of €y, within this range. Denote this parametrization by
R (g). This parametrization device is useful in represent-
ing any given coverage function S(R,R,, ..., Ry;P) as
S(R(g;),R(gy),...,R(g);P). The perimeter L now
takes the form

_< 08 _ as
L“E,. dR; ?aR(e,.)
_rtu . as
fEL de 3 e —e)gpi - (3)
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The Dirac delta function 8(e—¢;) and the integration in
Eq. (3) ensure that the summation with respect to i is
only over those g;’s that lie in the interval [e;,ey].
(€1,€5, . .., €;,. . .) can be viewed as a random series hav-
ing several possible realizations. Now represent the
Dirac delta function 8(e —¢;) as the functional derivative
(2,3]

SR (g;)
SR (¢)

Equation (3) now becomes

=8(e—¢g;) . 4)

EUd BR(E,) aS
e, “®2 5R(e) OR(e;)
tu 58S

e, “*3R(e) ’

where 85 /6R (g) is the functional derivative of S with
respect to the function R ( ) at the point €.

In general S is random and as is L. Randomness could
enter S in several ways: coordinates of the centers of the
disks and the total number of disks can all be random.
Denoting by { ) the average over these random variables,
we have the following relationships between the statisti-
cal properties of S and L:

_ oo, 8(S)
(L)=[, “deszs5 )

(6)

ey pe 2(S(1)S(2))
L2 = v Ud d _8________
(L*) faL st &1 828R1(sl)8R2(52) R,O)=R,()=R()

(8)

and so on for higher moments.

A remark is in order on the units of (L) in Eq. (7).
As it stands, the unit of (L) comes out as (length) '
This is because (.S ) represents only the fraction of length
(in one dimension), area (in two dimensions), or volume
(in three dimensions) that is covered by the 1D, 2D, or
3D clusters, respectively and hence (.S ) as used is dimen-
sionless. Hence (S ) needs to be multiplied by the actual
length, area, or volume of the system so that (L ) and its
analogs for one and three dimensions appear with their
proper units.

Equations such as (6) and (7) provide a connection be-
tween the perimeter L and the corresponding area S; a
functional differentiation over S followed by an integra-
tion yields L. Of course, in order for this connection to
be useful, S or {S) must be known as a functional of
R().

Quite extensive work is available on (S ). We shall
now briefly digress in order to describe it. Since this
work refers to a certain class of nucleation and growth
models, we shall first explain this model type and then
I(Jro;:eed to summarize developments aimed at finding

S).

Consider a 2D domain of area 4 (cf. Fig. 1) in which
disk-shaped clusters nucleate at random times
(71,72,73,. ..) and grow from locations having a
prescribed spatial distribution. Denoting by dR /dt the
rate of radial growth of a cluster, the radius R (¢,7) at
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time ¢ of a cluster that nucleated at time 7 is clearly
f t

.

If the state of nucleation and growth of the system is ob-

served at time ¢, several clusters having the following ra-
dii will be seen in any one realization:

dR

ar 9

(R(t,71),R(t,7,),R(t,T3),...) . (10)

For the random time series (7,,7,,73,...), a homogene-
ous Poisson process with a constant rate parameter A, or,
in general, a nonhomogeneous Poisson process with a
time-dependent rate A(?) is usually assumed. For the spa-
tial distribution of the clusters, two types of distributions
have been used so far: (i) a uniform distribution and (ii)
the Neyman-Scott cluster process [4.5]. Earlier work by
Canac [6], Kolmogoroff [7], Avrami [8], and Evans [9] re-
sulted in the equation [10] for {(S)

(S)=1—exp [—Vfot)\.(T)Rz(t,T)dT . (1)

This expression is appropriate for the case of a large sys-
tem with a uniform spatial distribution of clusters and a
Poisson distribution for the temporal part. More recent-
ly, Eq. (11) has been generalized, with the aid of
Robbins’s theorem [11], in two important directions: (i) a
theory for small systems [5,12,13] and (ii) formulations
that employ more general spatial processes [5,14], such as
the Neyman-Scott cluster process. The relationship of
the overlap problem to the nearest-neighbor statistics of
the underlying point process has also been pointed out
[15].

Returning now to our original perimeter problem and
making use of Egs. (7) and (11), we obtain the perimeter
law

_8(8) _ _rt »
5R(t,¢) exp[ WfOK(T)R (t,T)dT]Zﬂ}\.(E)R(t,E)
(12)
and
(L)=exp [_Wfotk(q-)Rz(t,T)dT]
X2'n'ft7»(e)R(t,e)de . (13)
0

Note that in Egs. (12) and (13), the time ¢ is treated as a
fixed parameter.

Several interesting and special cases of Eq. (13) arise
depending on the choice of the nucleation rate A(#) and
the growth rate dR /dt, which may, in general, have arbi-
trary time dependences. A simple choice for the growth
rate is dR /dt =K, a constant. Two special choices for
the nucleation rate are

A(t)=A, (a constant nucleation rate) , (14)
AMt)=N,6(t) (instantaneous nucleation) . (15)

The latter is called instantaneous nucleation since N
clusters nucleate (per unit area and on the average) simul-
taneously at zero time. In Eq. (15), 8(¢) is the Dirac delta



52 PERIMETER-AREA LAWS FOR A RANDOM AGGLOMERATION. ...

TABLE 1. Formulas for (L) and its analogs in one, two, and
three dimensions. Two different nucleation rates and a constant
growth rate are employed.

Dimension Nucleation rate (L) or its analogs

1 Nob(1) 2Nyexp[ —2N,Kt]

1 Ao 2ot exp[ —AoKt?]

2 Nyb(z) 27N Kt exp[ —mN K ?*t?]

2 Ao mAKt2exp[ —mAoK 3 /3]

3 Nod(t) 47Ny K?t?exp[ —47wN K3t /3]

3 Ao $mhoK 2t3exp —i;-koK3t4]
function.

Explicit formulas are presented in Table I for (L ) and
its analogs in one and three dimension for the constant
and the instantaneous nucleation rates [cf. Egs. (14) and
(15)). Note that the appropriate units for A(¢) are
L7 IT™! (in one dimension), L 2T~ ! (in two dimen-
sions), and L ~3T ! (in three dimensions).

Two additional remarks on Eq. (13) are in order. First,
for instantaneous nucleation, Eq. (13) reduces to

(L )=exp[ —mNyR*t,0)]2mNyR(2,0) . (16)

This is just the ordinary derivative of (S ) with respect to
R (2,0). Second, for constant growth rate K, (L), as
given by Eq. (13), is related to the time derivative of (S )
as

_1d(s)
(LY=+ it

However, for time-dependent growth rates, such a rela-
tion does not hold.

Independent of the mathematical description presented
above, one could anticipate the following scenario for the
time evolution of the perimeter. For small times, when
overlap is negligible, the total perimeter increases as the
disks grow in their radii. However, the overlap
phenomenon, which progressively comes into effect,
works in the opposite direction and may [16] eventually
cause the perimeter to decline to zero. This is what is ex-
pected in two and three dimensions. Formulas in Table I
for the two and three dimensions correctly give rise to
this anticipated behavior. The case of one dimension is
exceptional in that the point edges that now constitute
the “perimeter” can never increase in number through
growth of the linear segments, but they are only progres-
sively annihilated by overlap. Hence, for one dimension
and for instantaneous nucleation and constant growth
rate, the perimeter

(L )=2Ngexp[ —2N,Kt] (18)

(17)

falls monotonically in time. Of course, for a constant nu-
cleation rate, new point edges are being constantly creat-
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ed, which, in combination with overlap, lead to a
behavior similar to that of two and three dimensions (see
Table I).

To conclude, a simple connection is established be-
tween an n-dimensional random agglomerate volume and
its (n —1)-dimensional boundary area. This connection
is valid irrespective of such complexities, which may go
into the construction of the n-dimensional volume (S ),
as finite system geometries and more general spatial and
temporal distributions of the underlying process. The
growth function R (z,€) could also be stochastic, in which
case an additional averaging needs to be performed over
and above the space-time overaging implied by ( ) for
the nucleation process. Higher moments of the perimeter
such as (L?) can also be computed once the higher-
order correlations of the coverage such as (S (1)S(2))
become available. An appropriate functional generaliza-
tion of the Robbins theorem may provide these correla-
tions.

One may further generalize this formalism to noncircu-
lar and nonspherical geometries. To be specific, consider
a noncircular object prescribed by its support function
p(¢) [to be distinguished from the radial distance func-
tion 7(0)] in two dimensions. Our random agglomera-
tion problem now acquires an additional random variable
because the spatial orientation © of the noncircular ob-
ject (relative to a fixed axis) can also be random, having a
distribution p(©) [17]. A generalization is available [18]
for finding (S) in this case too; however, for large sys-
tems, where edge effects are unimportant, (S) turns out
to be independent of p(©) and is given by

(s)=1-exp [~ ['Mr) 4,17 |, (19)
where
A =4[ (p*d)~[p"(#)}de 20)

and the support function p(¢) is time dependent. Now a
formula for {L ) can be found as follows. The area 4 of
the noncircular object

2 ,
A=%f0 [p2—(p')?ld¢ 21)
is connected to its perimeter
2
f , Pd¢
through the equation [19]
27 SA 2w
dé——= do . 22
S 45, =J, pas (22)

Using this generalized connection between area and per-
imeter, Eq. (6) is generalized to

_ Ey 27 8S
L=[ def s ey (23)

where € and £ correspond, respectively, to the time and
angular dependences.

There are also nucleation and growth problems of
“mixed dimensionality,” e.g., 3D nuclei, say, hemispheri-
cal, pinned to a 2D substrate [20]. Pinning destroys the
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randomness required for applying formulas such as Eq.
(11). Nonetheless, formulas are available [20] to treat
these cases too, from which the corresponding formulas
for the perimeter or its analogs could be reached.

Though, in this paper, we have considered only the
first functional derivative of the n-dimensional volume S,
it is interesting to ask what (n —2)-dimensional object
the second functional derivative of S corresponds to. An
upper bound based on the second functional derivative is
available [21] for the random set consisting of the points
of intersections of the clusters, i.e., the neck regions (cf.
Fig. 1).

It was not the intent of this article to develop the pro-
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posed “functional derivative principle” in all its generali-
ties. However, we have indicated several directions for
further work. It is also hoped that this principle, if prop-
erly adapted and/or generalized, could find applications
wider than the ones described here.
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